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Abstract

This note describes a Stata implementation of a space-filling location selec-
tion algorithm. It optimally selects a subset from an array of locations so that
the spatial coverage of the array by the selected subset is optimized according
to a geometric criterion. Such an algorithm is useful in site selection prob-
lems, but also in various non-parametric estimation procedures, e.g. to select
(multivariate) knot locations in spline regression analysis.
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1 Introduction

Spatial statistics often involves geographical sampling from a set of locations (Cox et al.,

1997), e.g., for networks construction for air quality monitoring (Nychka and Saltzman, 1998)

or for the evaluation of exposure to environmental chemicals (Kim et al., 2010). Location

selection is also useful in estimation of multivariate non-parametric or semi-parametric re-

gression models. Estimation on a small set of grid points can reduce computational burden

dramatically. Similarly, proper selection of knot location is essential to spline regression meth-

ods (Ruppert et al., 2003): poor knot locations can generate poor spline estimators not even

competitive even with polynomial regression (Spiriti et al., 2012).

This article describes a Stata implementation of an algorithm for ‘space-filling’ spatial

sampling.1 The algorithm developed in Royle and Nychka (1998) selects an optimal set of

‘design points’ from a discrete set of ‘candidate points’ such that the coverage of the candidate

points by the design points is optimized according to a geometric coverage criterion. The

algorithm involves iterative “point-swapping” between the candidate points and the design

points until no swapping can further improve the coverage of the candidate points by the design

points. The coverage criteria is geometric but it is not restricted to spatial, 2-dimensional data:

the procedure can be used in miscellaneous settings when optimal subsampling of multivariate

data is needed.

We describe Royle and Nychka’s (1998) algorithm in Section 2 and its implementation in

Stata in Section 3. We illustrate several uses of the spacefill package in Section 4. We

show how it can be applied for generating a multidimensional regular grid of fixed size that

optimally ‘covers’ a dataset.

2 Geometric coverage criterion and the point-swapping algorithm

2.1 Geometric coverage criteria

The space-filling design selection considered here is based on optimization with respect to the

geometric coverage of a set of data points. We refer to data points as ‘locations’ although they

are not restricted to geographic locations identified by spatial coordinates –in principle any

1An R implementation of Royle and Nychka’s algorithm is available in Furrer et al. (2013).
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uni- or multi-dimensional coordinates can be used to ‘locate’ points (see the last example in

Section 4).

Following Royle and Nychka’s (1998) notation, let C denote a set of N candidate locations

(the ‘candidate set’). LetDn be a subset of n locations selected from C. Dn is a ‘design’ of size

n and the locations selected in Dn are ‘design points’. The geometric metric for the distance

between any given location x and the design Dn is

dp(x,Dn) =

(∑
y∈Dn

||x− y||p
) 1

p

(1)

with p < 0. dp(x,Dn) measures how well the design Dn ‘covers’ the location x. When

p −→ −∞, dp(x,Dn) tends to the shortest Euclidian distance between x and a point in Dn

(Johnson et al., 1990). A design D∗n is considered to optimally cover the set C for parameters

p and q if it minimizes

Cp,q(C,Dn) =

(∑
y∈C

dp(x,Dn)
q

) 1
q

(2)

over all possible designs Dn from C: the optimal design minimizes the q-power mean of the

“coverages” of each candidate points.

2.2 A point-swapping algorithm

In most applications, identification of the optimal design from calculation of the coverage

criterion for all possible subsets of size n from N is computationally prohibitive. Royle and

Nychka (1998) propose a simple point-swapping algorithm to determine D∗n. Starting from a

random initial design D0
n, the algorithm iteratively attempts to swap a point from the design

with the point from the candidate set that leads to the greatest improvement in coverage. If

this tentative swap improves coverage of the candidate set by the design, the latter is updated,

otherwise the swap is ignored. The process is repeated until no swap between a design point

and a candidate point can improve coverage. Significant speed improvement is obtained by

restricting potential swaps for a point in the design to its k nearest neighbours in the candidate

set (according to (1)). See Royle and Nychka (1998) for details.

The point-swapping algorithm makes it straightfoward to impose constraints on the in-

clusion or exclusion of specific locations: such points are considered in calculations of the
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geometric criteria but excluded from any potential swap. Non random initial design points can

also be used.

Critically, while the algorithm always converges to a solution, it is not guaranteed to con-

verge to the globally optimal D∗n for any initial design, in particular when potential swaps are

limited to nearest neighbours. It is therefore recommended to repeat estimation for multiple

initial design sets and select the design with the best coverage across repetitions (see Section

4).

3 The spacefill command

The command spacefill performs space-filling location selection using Royle and Ny-

chka’s (1998) point-swapping algorithm. It operates on N observations from variables iden-

tifying the coordinates of the data points and returns the subset of n < N observations that

optimally covers the data.

spacefill options allow forcing inclusion or exclusion of particular observations, user-

specified initial design, automatic standardization of location coordinates. When weights are

specified, spacefill performs weighted calculation of the aggregate coverage measure (see

Eq. 2). We show in Section 4 that combining weights and restrictions on candidate locations

makes it easy to create an ‘optimal’ regular grid over a dataset.

3.1 Syntax

spacefill varlist
[

weight
] [

if
] [

in
]
,
[
ndesign(#) design0(varlist) fixed(varname)

exclude(varname) p(#) q(#) nruns(#) nnpoints(#) nnfrac(#) standardize

generate(newvar) genmarker(newvar) noverbose
]

fweight, aweight, pweight and iweight are allowed; see [U] 11.1.6 weight –

Weights.

varlist and the
[

if
]

or
[

in
]

clauses identify the data from which the optimal subset is

selected.

3.2 Options

ndesign(#) specifies n, the size of the design. Default is 4.
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design0(varlist) identifies a (set of) initial designs identified by non-zero varlist. If mul-

tiple variables are passed, one optimization is performed on each initial design and the

selected design is the one with best coverage.

fixed(varname) identifies observations that are included in all designs when varname is

non-zero.

exclude(varname) identifies obervations excluded from all designs when varname is non-

zero.

p(#) specifies a scalar value for the parameter p (p = −1 gives harmonic distance, and

p = −∞ gives the minimum distance). Default is −5 as recommended in Royle and

Nychka (1998).

q(#) specifies a scalar value for the parameter q. Default is 1 (the arithmetic mean).

nruns(#) sets the number of independent runs to perform with random initial designs. De-

fault is 5.

nnpoints(#) specifies the number of nearest neighbours considered in the point-swapping

iterations. Limiting checks to nearest neighbours results in speed improvement.

nnfrac(#) specifies the fraction of data to consider as nearest neighbours in the point-

swapping iterations. nnfrac(#) and nnpoints(#) are mutually exclusive. Default is

0.50.

standardize standardizes all variables in varlist to zero mean and unit standard deviation

when calculating distances between observations.

generate(newvarname) specifies the names for new variable containing the locations of

the best design points. If one variable is specified, it is used as a stubname, otherwise the

number of new variable names must match the number of variables in varlist.

genmarker(newvarname) specifies the name of a new binary variable equal to 1 for obser-

vations selected in the best design and 0 otherwise.

noverbose suppresses display of output.
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4 Examples

We illustrate application of spacefill on the Ozone2 dataset available in the R ‘fields’

package (Furrer et al., 2013). The dataset contains air quality information in 147 locations in

the US Midwest in the Summer 1987. Locations are identified by their relative latitude (lat)

and longitude (lon).

Let us start with selection of an optimal design of size 10 from the 147 locations, using

default values p = −5 and q = 1, candidate swaps limited to the nearest half of the locations

and five runs with random starting designs.

. insheet using Ozone2.txt
(3 vars, 147 obs)
. spacefill lon lat, ndesign(10)
Run 1 .... (Cpq = 100.34)
Run 2 .... (Cpq = 96.92)
Run 3 ...... (Cpq = 94.19)
Run 4 .... (Cpq = 95.00)
Run 5 .. (Cpq = 95.19)
. return list

scalars:
r(q) = 1
r(p) = -5

r(nn) = 69
r(Cpq) = 94.19164847896585

r(nexcluded) = 0
r(nfixed) = 0
r(ndesign) = 10

r(N) = 147

macros:
r(varlist) : "lon lat"

matrices:
r(Best_Design) : 10 x 2

. matrix list r(Best_Design)

r(Best_Design)[10,2]
lon lat

r1 -87.752998 41.855
r2 -90.160004 38.612
r3 -85.841003 39.935001
r4 -87.57 38.021
r5 -91.662003 41.992001
r6 -84.476997 39.106998
r7 -85.578003 38.137001
r8 -85.671997 42.985001
r9 -83.403 42.388
r10 -88.283997 43.333

Notice that the first run leads to a somewhat higher aggregate distance to the design points

(Cpq=100.34) than the other runs. This stresses the importance of multiple starting de-

signs. Figure 1 shows the selected locations in the best design (achieved at Run 3 where

Cpq=94.19).

Speed improvements can be achieved by restricting potential swaps to a smaller number of

nearest neighbours. Limiting search to 25 nearest neighbours (against 69 –the default one half
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Figure 1. Scatter plot and histogram of longitude and latitude for all 147 locations (grey histograms and
grey hollow circles) and 10 best design points (red thick green histograms and red solid circles)
with p = −5 and q = 1 (default).

of the locations– in the first example), our second example below runs in 6 seconds against

11 seconds for our initial example, without much loss in the coverage of the resulting design

(Cpq=96.59). On the other hand, running spacefill with the full candidates as potential

swaps runs in over 30 seconds for an optimal design with Cpq=91.96.

. spacefill lon lat , ndesign(10) nnpoints(25) genmarker(set1)
Run 1 ..... (Cpq = 117.02)
Run 2 .... (Cpq = 109.93)
Run 3 .. (Cpq = 110.99)
Run 4 .. (Cpq = 101.05)
Run 5 ..... (Cpq = 96.59)
. spacefill lon lat , ndesign(10) nnfrac(1)
Run 1 ... (Cpq = 91.96)
Run 2 .... (Cpq = 91.96)
Run 3 .. (Cpq = 91.96)
Run 4 ... (Cpq = 92.32)
Run 5 ... (Cpq = 91.96)

Let us now illustrate use of the genmarker, fixed and exclude options. genmarker(set1)

in the previous call generated a dummy variable equal to 1 for the 10 points selected into the

best design and 0 otherwise. We now specify exclude(set1) to derive a new design with

10 different locations and then use fixed(set2) to force this new design into a design of

size 15.

. spacefill lon lat, ndesign(10) nnpoints(25) exclude(set1) genmarker(set2) noverbose
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10 points excluded from designs (set1>0)
. spacefill lon lat, ndesign(15) nnpoints(25) fixed(set2) genmarker(set3) noverbose
10 fixed design points (set2>0)
. list set1 set2 set3 if set1+set2+set3>0

set1 set2 set3

4. 1 0 0
10. 0 1 1
25. 1 0 0
40. 1 0 0
48. 0 1 1

55. 1 0 0
58. 0 1 1
60. 1 0 0
61. 0 1 1
63. 0 0 1

67. 0 0 1
74. 1 0 0
77. 0 0 1
80. 0 1 1
82. 0 1 1

89. 0 0 1
91. 0 1 1
97. 1 0 0
107. 0 1 1
109. 1 0 0

121. 0 1 1
125. 0 0 1
135. 0 1 1
140. 1 0 0
143. 1 0 0

The key parameters q and p of the coverage criterion can also be flexibly specified. Figure

2 illustrates three designs selected with default parameters p = −5 and q = 1 (dots), with

p = −1 and q = 1 (hollowed squares), and with p = −1 and q = 2 (crosses). With p = −5

the distance of a location to the design is mainly determined by the distance to the closest

point of the design; p = −1 takes into account the distance to all points in the design, leading

to more central location selections. Setting q = 2 penalizes large distances between design

and non-design points, leading to location selections more spread out towards external points.

Overall, these three parameter combinations result in similar designs. Note in these examples

our use of user-specified random starting designs with option design0 to ensure comparison

is made on common initial values.

. gen byte init1 = 1 in 1/10
(137 missing values generated)
. gen byte init2 = 1 in 11/20
(137 missing values generated)
. gen byte init3 = 1 in 21/30
(137 missing values generated)
. gen byte init4 = 1 in 31/40
(137 missing values generated)
. gen byte init5 = 1 in 41/50
(137 missing values generated)
. local options nnfrac(0.3) nruns(10) design0(init1 init2 init3 init4 init5) noverbose
. spacefill lat lon, ‘options’ gen(Des)
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. spacefill lat lon, ‘options’ gen(Des_BIS) p(-1) q(1)

. spacefill lat lon, ‘options’ gen(Des_TER) p(-1) q(2)
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Figure 2. Scatter plot of longitude and latitude for all 147 locations (grey hollow circles) and best
design points with default p = −5 and q = 1 (red dots), with p = −1 and q = 1 (green squares)
and with p = −1 and q = 2 (black crosses).

By combining the exclude options and weights, spacefill can be used to find an op-

timal design from an external set of locations. This is particularly useful to construct a regular

grid covering the data. We start by generating a dataset with a large number of candidate grid

points using range ([R] range) and fillin ([R] fillin). We append this generated dataset to

our locations data. Actual observations from our sample are identified by sample==0 while

the generated candidate locations on the regular grid have sample==1.

We can now run spacefill to select from the candidate grid points a smaller subset of

grid points that optimally covers the actual locations. To do so, we run spacefill on the

whole set of data points with (i) exclude(sample) to select points from the grid only and

(ii) with [iw=sample] so that the aggregate distance is computed only between the design

points on the grid and the actual locations. A set of 25 optimally chosen grid points from a

candidate grid of 11× 16 points are shown in Figure 3.

. clear
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. set obs 16
obs was 0, now 16
. range lon -95 -80 16
. range lat 36 46 11
(5 missing values generated)
. fillin lon lat
. gen byte sample = 0
. save gridlatlon.dta , replace
file gridlatlon.dta saved
. clear
. insheet using Ozone2.txt
(3 vars, 147 obs)
. keep lat lon
. gen byte sample = 1
. append using gridlatlon
. spacefill lon lat [iw=sample], exclude(sample) ndesign(25) nnpoints(100) genmarker(subgrid1)
147 points excluded from designs (sample>0)
Run 1 ... (Cpq = 63.33)
Run 2 ... (Cpq = 63.09)
Run 3 .... (Cpq = 63.48)
Run 4 .... (Cpq = 63.13)
Run 5 ... (Cpq = 63.16)
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Figure 3. Actual locations (hollowed grey circles), candidate grid points (crosses), and 25 optimally
selected grid points (red solid dots).

Our final example illustrates use of spacefill with multi-dimensional and non-spatial

data taken from the Panel Socio-Economique Liewen zu Lëtzebuerg (PSELL3/EU-SILC) col-

lected in 2007.2 We extract information on the height, weight and wage of a random subsample

of 500 women. We use spacefill to select a subset of 50 women with characteristcs on

these three variables that best ‘cover’ the sample; this subset would be used, e.g., as a set on

which to run computationally intensive models. Given the different nature and scaling of the

2PSELL3/EU-SILC is a longitudinal survey on income and living conditions representative of the population
residing in Luxembourg. Data are collected annually in a sample of more than 3,500 private households.
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three variables, we specify the standardize option to compute the geometric distance cri-

terion after standardizing the three variables to have zero mean and unit standard deviation in

the sample. Figures 4 and 5 shows bivariate scatter plots of the selected design points.

. summarize height weight wage

Variable Obs Mean Std. Dev. Min Max

height 500 165.21 6.8886 150 192
weight 500 65.368 12.80502 43 127

wage 500 2720.688 1920.047 300 10000
. spacefill height weight wage, ndes(50) nnfrac(0.05) generate(BH BW BWa) standardize
Run 1 ... (Cpq = 198.11)
Run 2 ..... (Cpq = 195.91)
Run 3 ...... (Cpq = 196.08)
Run 4 ....... (Cpq = 198.09)
Run 5 ... (Cpq = 195.56)
. matrix list r(Best_Design)

r(Best_Design)[50,3]
height weight wage

r1 162 50 1500
r2 165 76 3700
r3 170 64 1800
r4 169 54 9510
r5 172 92 4300
r6 165 49 6968
r7 160 49 1900
r8 165 93 1500
r9 176 87 1980
r10 156 56 2000
r11 164 75 5500
r12 167 75 9000
r13 160 56 756
r14 170 75 2700
r15 178 70 1600
r16 160 64 1620
r17 179 77 6138
r18 161 52 8894
r19 180 84 8600
r20 154 85 4126
r21 150 65 771
r22 170 72 7366
r23 156 66 881
r24 178 127 3700
r25 166 58 1100
r26 182 103 1820
r27 165 54 1500
r28 170 69 1350
r29 152 49 2200
r30 168 62 2544
r31 159 88 412
r32 155 50 1500
r33 165 68 1547
r34 156 51 6000
r35 170 95 2300
r36 165 76 600
r37 168 59 4308
r38 166 61 5100
r39 170 58 7470
r40 174 67 2900
r41 155 50 3199
r42 166 99 7000
r43 177 53 1800
r44 170 58 3750
r45 168 73 1900
r46 192 103 1250
r47 170 113 3800
r48 178 101 4665
r49 153 84 900
r50 176 71 4000
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Figure 4. Scatter plot and histogram of height and weight for all data (grey histograms and grey hollow
markers) and best design points (thick pink histograms and pink markers), for the standardized
values of the height, weight and wage.
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