I N S T E A

WORKING PAPERS

Space-filling location selection

Michela BIA
Philippe VAN KERM

Space-filling location selection*

Michela Bia
CEPS/INSTEAD, Luxembourg
Philippe Van Kerm
CEPS/INSTEAD, Luxembourg

September 2013

Abstract

This note describes a Stata implementation of a space-filling location selection algorithm. It optimally selects a subset from an array of locations so that the spatial coverage of the array by the selected subset is optimized according to a geometric criterion. Such an algorithm is useful in site selection problems, but also in various non-parametric estimation procedures, e.g. to select (multivariate) knot locations in spline regression analysis.

Keywords: spatial sampling, space-filling design, site selection, multivariate knot selection, point-swapping

[^0]
1 Introduction

Spatial statistics often involves geographical sampling from a set of locations (Cox et al., 1997), e.g., for networks construction for air quality monitoring (Nychka and Saltzman, 1998) or for the evaluation of exposure to environmental chemicals (Kim et al., 2010). Location selection is also useful in estimation of multivariate non-parametric or semi-parametric regression models. Estimation on a small set of grid points can reduce computational burden dramatically. Similarly, proper selection of knot location is essential to spline regression methods (Ruppert et al., 2003): poor knot locations can generate poor spline estimators not even competitive even with polynomial regression (Spiriti et al., 2012).

This article describes a Stata implementation of an algorithm for 'space-filling' spatial sampling. ${ }^{1}$ The algorithm developed in Royle and Nychka (1998) selects an optimal set of 'design points' from a discrete set of 'candidate points' such that the coverage of the candidate points by the design points is optimized according to a geometric coverage criterion. The algorithm involves iterative "point-swapping" between the candidate points and the design points until no swapping can further improve the coverage of the candidate points by the design points. The coverage criteria is geometric but it is not restricted to spatial, 2-dimensional data: the procedure can be used in miscellaneous settings when optimal subsampling of multivariate data is needed.

We describe Royle and Nychka's (1998) algorithm in Section 2 and its implementation in Stata in Section 3. We illustrate several uses of the spacefill package in Section 4. We show how it can be applied for generating a multidimensional regular grid of fixed size that optimally 'covers' a dataset.

2 Geometric coverage criterion and the point-swapping algorithm

2.1 Geometric coverage criteria

The space-filling design selection considered here is based on optimization with respect to the geometric coverage of a set of data points. We refer to data points as 'locations' although they are not restricted to geographic locations identified by spatial coordinates -in principle any

[^1]uni- or multi-dimensional coordinates can be used to 'locate' points (see the last example in Section 4).

Following Royle and Nychka's (1998) notation, let \mathcal{C} denote a set of N candidate locations (the 'candidate set'). Let \mathcal{D}_{n} be a subset of n locations selected from \mathcal{C}. \mathcal{D}_{n} is a 'design' of size n and the locations selected in \mathcal{D}_{n} are 'design points'. The geometric metric for the distance between any given location x and the design \mathcal{D}_{n} is

$$
\begin{equation*}
d_{p}\left(\mathbf{x}, \mathcal{D}_{n}\right)=\left(\sum_{\mathbf{y} \in D_{n}}\|\mathbf{x}-\mathbf{y}\|^{p}\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

with $p<0 . d_{p}\left(\mathrm{x}, \mathcal{D}_{n}\right)$ measures how well the design \mathcal{D}_{n} 'covers' the location x . When $p \longrightarrow-\infty, d_{p}\left(\mathbf{x}, \mathcal{D}_{n}\right)$ tends to the shortest Euclidian distance between \mathbf{x} and a point in \mathcal{D}_{n} (Johnson et al., 1990). A design \mathcal{D}_{n}^{*} is considered to optimally cover the set \mathcal{C} for parameters p and q if it minimizes

$$
\begin{equation*}
C_{p, q}\left(\mathcal{C}, \mathcal{D}_{n}\right)=\left(\sum_{\mathbf{y} \in \mathcal{C}} d_{p}\left(\mathbf{x}, \mathcal{D}_{n}\right)^{q}\right)^{\frac{1}{q}} \tag{2}
\end{equation*}
$$

over all possible designs \mathcal{D}_{n} from \mathcal{C} : the optimal design minimizes the q-power mean of the "coverages" of each candidate points.

2.2 A point-swapping algorithm

In most applications, identification of the optimal design from calculation of the coverage criterion for all possible subsets of size n from N is computationally prohibitive. Royle and Nychka (1998) propose a simple point-swapping algorithm to determine \mathcal{D}_{n}^{*}. Starting from a random initial design \mathcal{D}_{n}^{0}, the algorithm iteratively attempts to swap a point from the design with the point from the candidate set that leads to the greatest improvement in coverage. If this tentative swap improves coverage of the candidate set by the design, the latter is updated, otherwise the swap is ignored. The process is repeated until no swap between a design point and a candidate point can improve coverage. Significant speed improvement is obtained by restricting potential swaps for a point in the design to its k nearest neighbours in the candidate set (according to (1)). See Royle and Nychka (1998) for details.

The point-swapping algorithm makes it straightfoward to impose constraints on the inclusion or exclusion of specific locations: such points are considered in calculations of the
geometric criteria but excluded from any potential swap. Non random initial design points can also be used.

Critically, while the algorithm always converges to a solution, it is not guaranteed to converge to the globally optimal \mathcal{D}_{n}^{*} for any initial design, in particular when potential swaps are limited to nearest neighbours. It is therefore recommended to repeat estimation for multiple initial design sets and select the design with the best coverage across repetitions (see Section 4).

3 The spacefill command

The command spacefill performs space-filling location selection using Royle and Nychka's (1998) point-swapping algorithm. It operates on N observations from variables identifying the coordinates of the data points and returns the subset of $n<N$ observations that optimally covers the data.
spacefill options allow forcing inclusion or exclusion of particular observations, userspecified initial design, automatic standardization of location coordinates. When weights are specified, spacefill performs weighted calculation of the aggregate coverage measure (see Eq. 2). We show in Section 4 that combining weights and restrictions on candidate locations makes it easy to create an 'optimal' regular grid over a dataset.

3.1 Syntax

```
spacefill varlist [weight] [if] [in], [ ndesign(#) design0(varlist) fixed(varname)
    exclude(varname) p(#) q(#) nruns(#) nnpoints(#) nnfrac(#) standardize
    generate(newvar) genmarker(newvar) noverbose ]
```

fweight, aweight, pweight and iweight are allowed; see [u] 11.1.6 weight Weights.
varlist and the [if] or [in] clauses identify the data from which the optimal subset is selected.

3.2 Options

ndesign(\#) specifies n, the size of the design. Default is 4 .
design0 (varlist) identifies a (set of) initial designs identified by non-zero varlist. If multiple variables are passed, one optimization is performed on each initial design and the selected design is the one with best coverage
fixed (varname) identifies observations that are included in all designs when varname is non-zero.
exclude (varname) identifies obervations excluded from all designs when varname is nonzero.
$\mathrm{p}(\#)$ specifies a scalar value for the parameter p ($p=-1$ gives harmonic distance, and $p=-\infty$ gives the minimum distance). Default is -5 as recommended in Royle and Nychka (1998).
$q(\#)$ specifies a scalar value for the parameter q. Default is 1 (the arithmetic mean).
nruns (\#) sets the number of independent runs to perform with random initial designs. Default is 5 .
nnpoints (\#) specifies the number of nearest neighbours considered in the point-swapping iterations. Limiting checks to nearest neighbours results in speed improvement.
nnfrac (\#) specifies the fraction of data to consider as nearest neighbours in the pointswapping iterations. nnfrac (\#) and nnpoints (\#) are mutually exclusive. Default is 0.50 .
standardize standardizes all variables in varlist to zero mean and unit standard deviation when calculating distances between observations.
generate (newvarname) specifies the names for new variable containing the locations of the best design points. If one variable is specified, it is used as a stubname, otherwise the number of new variable names must match the number of variables in varlist.
genmarker (newvarname) specifies the name of a new binary variable equal to 1 for observations selected in the best design and 0 otherwise.
noverbose suppresses display of output.

4 Examples

We illustrate application of spacefill on the Ozone2 dataset available in the R 'fields' package (Furrer et al., 2013). The dataset contains air quality information in 147 locations in the US Midwest in the Summer 1987. Locations are identified by their relative latitude (lat) and longitude (lon).

Let us start with selection of an optimal design of size 10 from the 147 locations, using default values $p=-5$ and $q=1$, candidate swaps limited to the nearest half of the locations and five runs with random starting designs.

```
. insheet using Ozone2.txt
(3 vars, }147\mathrm{ obs)
. spacefill lon lat, ndesign(10)
Run 1 .... (Cpq =
Run 2 ... (Cpq = (CPM
Run 3 ..... (Cpq = 94.19)
Run 4 ... (Cpq = 95.00)
Run 5 .. (CPq = 95.19)
. return list
scalars:
                                    r(q) = 1
                                    r(p) = -5
                                    F(Cpq) = 94.19164847896585
        r(nexcluded) = 0
            r(nfixed) = 0
            r(ndesign) = 10
                    r(N) = 147
macros:
                r(varlist) : "lon lat"
matrices:
    r(Best_Design) : 10 x 2
. matrix list r(Best_Design)
r(Best_Design)[10,2]
            lon lat
r1 -87.752998 41.855
r2 -90.160004 38.612
r3 -85.841003 39.935001
r4 -87.57 38.021
r5 -91.662003 41.992001
r6 -84.476997 39.106998
r7 -85.578003 38.137001
r8 -85.671997 42.985001
r9 -83.403 42.388
r10 -88.283997 43.333
```

Notice that the first run leads to a somewhat higher aggregate distance to the design points (Cpq=100.34) than the other runs. This stresses the importance of multiple starting designs. Figure 1 shows the selected locations in the best design (achieved at Run 3 where Cpq=94.19).

Speed improvements can be achieved by restricting potential swaps to a smaller number of nearest neighbours. Limiting search to 25 nearest neighbours (against 69 -the default one half

Figure 1. Scatter plot and histogram of longitude and latitude for all 147 locations (grey histograms and grey hollow circles) and 10 best design points (red thick green histograms and red solid circles) with $p=-5$ and $q=1$ (default).
of the locations- in the first example), our second example below runs in 6 seconds against 11 seconds for our initial example, without much loss in the coverage of the resulting design (Cpq=96.59). On the other hand, running spacefill with the full candidates as potential swaps runs in over 30 seconds for an optimal design with $\mathrm{Cpq}=91.96$.

Let us now illustrate use of the genmarker, fixed and exclude options. genmarker (set1) in the previous call generated a dummy variable equal to 1 for the 10 points selected into the best design and 0 otherwise. We now specify exclude (set 1) to derive a new design with 10 different locations and then use fixed (set 2) to force this new design into a design of size 15.

[^2]```
1 0 \text { points excluded from designs (set1>0)}
. spacefill lon lat, ndesign(15) nnpoints(25) fixed(set2) genmarker(set3) noverbose
10 fixed design points (set2>0)
. list set1 set2 set3 if set1+set2+set3>0
```

|  | set 1 | set2 | set 3 |
| :---: | :---: | :---: | :---: |
| 4. | 1 | 0 | 0 |
| 10. | 0 | 1 | 1 |
| 25. | 1 | 0 | 0 |
| 40. | 1 | 0 | 0 |
| 48. | 0 | 1 | 1 |
| 55. | 1 | 0 | 0 |
| 58. | 0 | 1 | 1 |
| 60. | 1 | 0 | 0 |
| 61. | 0 | 1 | 1 |
| 63. | 0 | 0 | 1 |
| 67. | 0 | 0 | 1 |
| 74. | 1 | 0 | 0 |
| 77. | 0 | 0 | 1 |
| 80. | 0 | 1 | 1 |
| 82. | 0 | 1 | 1 |
| 89. | 0 | 0 | 1 |
| 91. | 0 | 1 | 1 |
| 97. | 1 | 0 | 0 |
| 107. | 0 | 1 | 1 |
| 109. | 1 | 0 | 0 |
| 121. | 0 | 1 | 1 |
| 125. | 0 | 0 | 1 |
| 135. | 0 | 1 | 1 |
| 140. | 1 | 0 | 0 |
| 143. | 1 | 0 | 0 |

The key parameters $q$ and $p$ of the coverage criterion can also be flexibly specified. Figure 2 illustrates three designs selected with default parameters $p=-5$ and $q=1$ (dots), with $p=-1$ and $q=1$ (hollowed squares), and with $p=-1$ and $q=2$ (crosses). With $p=-5$ the distance of a location to the design is mainly determined by the distance to the closest point of the design; $p=-1$ takes into account the distance to all points in the design, leading to more central location selections. Setting $q=2$ penalizes large distances between design and non-design points, leading to location selections more spread out towards external points. Overall, these three parameter combinations result in similar designs. Note in these examples our use of user-specified random starting designs with option design0 to ensure comparison is made on common initial values.

```
. gen byte init1 = 1 in 1/10
(137 missing values generated)
. gen byte init2 = 1 in 11/20
(137 missing values generated)
. gen byte init3 = 1 in 21/30
(137 missing values generated)
. gen byte init4 = 1 in 31/40
(137 missing values generated)
. gen byte init5 = 1 in 41/50
(137 missing values generated)
. local options nnfrac(0.3) nruns(10) design0(init1 init2 init3 init4 init5) noverbose
. spacefill lat lon, 'options' gen(Des)
```

```
. spacefill lat lon, 'options' gen(Des_BIS) p(-1) q(1)
. spacefill lat lon, 'options' gen(Des_TER) p(-1) q(2)
```



Figure 2. Scatter plot of longitude and latitude for all 147 locations (grey hollow circles) and best design points with default $p=-5$ and $q=1$ (red dots), with $p=-1$ and $q=1$ (green squares) and with $p=-1$ and $q=2$ (black crosses).

By combining the exclude options and weights, spacefill can be used to find an optimal design from an external set of locations. This is particularly useful to construct a regular grid covering the data. We start by generating a dataset with a large number of candidate grid points using range ([R] range) and fillin ([R] fillin). We append this generated dataset to our locations data. Actual observations from our sample are identified by sample==0 while the generated candidate locations on the regular grid have sample==1.

We can now run spacefill to select from the candidate grid points a smaller subset of grid points that optimally covers the actual locations. To do so, we run spacefill on the whole set of data points with (i) exclude (sample) to select points from the grid only and (ii) with [iw=sample] so that the aggregate distance is computed only between the design points on the grid and the actual locations. A set of 25 optimally chosen grid points from a candidate grid of $11 \times 16$ points are shown in Figure 3 .

```
. set obs 16
obs was 0, now 16
. range lon -95 -80 16
. range lat 36 46 11
(5 missing values generated)
. fillin lon lat
. gen byte sample = 0
. save gridlatlon.dta , replace
file gridlatlon.dta saved
. clear
. insheet using Ozone2.txt
(3 vars, 147 obs)
. keep lat lon
. gen byte sample = 1
. append using gridlatlon
. spacefill lon lat [iw=sample], exclude(sample) ndesign(25) nnpoints(100) genmarker(subgrid1)
147 points excluded from designs (sample>0)
\begin{tabular}{llll}
Run 1 & \(\ldots\) & \((\mathrm{Cpq}=\) & \(63.33)\) \\
Run 2 & \(\ldots\) & \((\mathrm{Cpq}=\) & \(63.09)\) \\
Run & 3 & \(\ldots\) & \((\mathrm{Cpq}=\) \\
Run 4 & \(\ldots\) & \((\mathrm{Cpq}=\) & \(63.48)\) \\
R & (CPq & \(63.13)\)
\end{tabular}
Mun llll
```



Figure 3. Actual locations (hollowed grey circles), candidate grid points (crosses), and 25 optimally selected grid points (red solid dots).

Our final example illustrates use of spacefill with multi-dimensional and non-spatial data taken from the Panel Socio-Economique Liewen zu Lëtzebuerg (PSELL3/EU-SILC) collected in 2007. ${ }^{2}$ We extract information on the height, weight and wage of a random subsample of 500 women. We use spacefill to select a subset of 50 women with characteristcs on these three variables that best 'cover' the sample; this subset would be used, e.g., as a set on which to run computationally intensive models. Given the different nature and scaling of the

[^3]three variables, we specify the standardize option to compute the geometric distance criterion after standardizing the three variables to have zero mean and unit standard deviation in the sample. Figures 4 and 5 shows bivariate scatter plots of the selected design points.

| • summarize height weight wage |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Variable | Obs | Mean | Std. Dev. | Min | Max |
| height | 500 | 165.21 | 6.8886 | 150 | 192 |
| weight | 500 | 65.368 | 12.80502 | 43 | 127 |
| wage | 500 | 2720.688 | 1920.047 | 300 | 10000 |


. matrix list $r$ (Best_Design)
r(Best_Design) $[50,3]$

| $r 1$ | 162 | 50 | 150 |
| :--- | :--- | :--- | :--- |
| $r 2$ | 165 | 76 | 370 |


| $r 3$ | 170 | 64 |
| :--- | :--- | :--- |
| $r$ |  |  |


| $r 4$ | 169 | 54 |
| :--- | :--- | :--- |


| $r 5$ | 172 | 92 | 4300 |
| :--- | :--- | :--- | :--- |


| $r 6$ | 165 | 49 | 6968 |
| :--- | :--- | :--- | :--- |


| $r$ | 160 | 49 |
| :--- | :--- | :--- |
| $r 8$ | 1965 | 93 |


| 169 | 165 |
| :--- | :--- |


| 10 | 156 | 56 |
| :--- | :--- | :--- |


| $r 11$ | 164 | 75 | 5500 |
| :--- | :--- | :--- | :--- |


| 112 | 167 | 75 |
| :--- | :--- | :--- |


| 113 | 160 | 56 | 756 |
| :--- | :--- | :--- | :--- |


| 14 | 170 | 75 | 2700 |
| :--- | :--- | :--- | :--- |


| $r 15$ | 178 | 70 |
| :--- | :--- | :--- |


| $r 16$ | 160 | 64 | 1620 |
| :--- | :--- | :--- | :--- |


| 17 | 179 | 77 | 6138 |
| :--- | :--- | :--- | :--- |


| $r 18$ | 161 | 52 | 8894 |
| :--- | :--- | :--- | :--- |


| 19 | 180 | 84 | 8600 |
| :--- | :--- | :--- | :--- |


| $r 20$ | 154 | 85 | 4126 |
| :--- | :--- | :--- | :--- |


| $r 21$ | 150 | 65 | 771 |
| :--- | :--- | :--- | :--- |


| $r 22$ | 170 | 72 | 7366 |
| :--- | :--- | :--- | :--- |


| $r 23$ | 156 | 66 |
| :--- | :--- | :--- |


|  | 24 | 178 | 127 |
| :--- | :--- | :--- | :--- |


| $r 25$ | 166 | 58 | 1100 |
| :--- | :--- | :--- | :--- |


| $r 26$ | 182 | 1830 |
| :--- | :--- | :--- | :--- |


| $r 27$ | 165 | 54 | 1500 |
| :--- | :--- | :--- | :--- |


| $r 28$ | 170 | 69 |
| :--- | :--- | :--- |


| $r 29$ | 152 | 49 |
| :--- | :--- | :--- |


| $r 30$ | 168 | 62 | 2544 |
| :--- | :--- | :--- | :--- |


| $r 31$ | 159 | 88 | 412 |
| :--- | :--- | :--- | :--- |


| $r 32$ | 155 | 50 | 1500 |
| :--- | :--- | :--- | :--- |


| $r 33$ | 165 | 68 | 1547 |
| :--- | :--- | :--- | :--- |


| $r 34$ | 156 | 51 |
| :--- | :--- | :--- |


| $r 35$ | 170 | 9300 |
| :--- | :--- | :--- |


| $r 36$ | 165 | 76 |
| :--- | :--- | :--- |


|  | 37 | 168 | 59 |
| :--- | :--- | :--- | :--- |


|  | 38 | 166 | 6100 |
| :--- | :--- | :--- | :--- |


| $r 39$ | 170 | 58 |
| :--- | :--- | :--- |


| $r 40$ | 174 | 67 | 2900 |
| :--- | :--- | :--- | :--- |


| $r 41$ | 155 | 50 |
| :--- | :--- | :--- |
| 1969 |  |  |


| $r 42$ | 166 | 99 | 7000 |
| :--- | :--- | :--- | :--- |


| $r 43$ | 177 | 53 | 1800 |
| :--- | :--- | :--- | :--- |


| $r 44$ | 170 | 58 | 3750 |
| :--- | :--- | :--- | :--- |


| $r 45$ | 168 | 79 | 1900 |
| :--- | :--- | :--- | :--- |


| $r 46$ | 192 | 103 | 1250 |
| :--- | :--- | :--- | :--- |


| 147 | 170 | 113 | 3800 |
| :--- | :--- | :--- | :--- |


| $r 48$ | 178 | 101 | 4665 |
| :--- | :--- | :--- | :--- |


| $r 49$ | 153 | 84 | 900 |
| ---: | ---: | ---: | ---: |
| $r 50$ | 176 | 71 | 4000 |



Figure 4. Scatter plot and histogram of height and weight for all data (grey histograms and grey hollow markers) and best design points (thick pink histograms and pink markers), for the standardized values of the height, weight and wage.

## References

Cox, D. D., Cox, L. H. and Ensor, K. B. (1997), ‘Spatial sampling and the environment: some issues and directions', Environmental and Ecological Statistics 4(3), 219-233.

Furrer, R., Nychka, D. and Sain, S. (2013), fields: Tools for spatial data. R package version 6.7.6, 2013-04-21.

## URL: http://CRAN.R-project.org/package=fields

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990), 'Minimax and maximin distance designs', Journal of Statistical Planning and Inference 26(2), 131-148.

Kim, J., Lawson, A. B., Dermott, S. M. and Aelion, C. M. (2010), ‘Bayesian spatial modeling of disease risk in relation to multivariate environmental risk fields', Statistical Medicine 29(1), 142-157.

Nychka, D. and Saltzman, N. (1998), Design of air-quality monitoring networks, in D. Nychka,


Figure 5. Scatter plot and histogram of height and wage for all data (grey histograms and grey hollow markers) and best design points (thick pink histograms and pink markers), for the standardized values of the height, weight and wage.
W. W. Piegorsch and L. H. Cox, eds, ‘Case Studies in Environmental Statistics’, Vol. 132 of Lecture Notes in Statistics, Springer US, pp. 51-76.

Royle, J. A. and Nychka, D. (1998), 'An algorithm for the construction of spatial coverage designs with implementation in splus', Computers \& Geosciences 24(5), 479-488.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003), Semiparametric regression, Cambridge Series in Statistics and Probabilistic Mathematics, Cambridge University Press, New York.

Spiriti, S., Eubank, R., Smith, P. and Young, D. (2012), 'Knot selection for least squares and penalized splines', Journal of Statistical Computation \& Simulation 1(1), 1-17.

## CEPS

3, avenue de la Fonte
L-4364 Esch-sur-Alzette
Tél.: +352 58.58.55-801
www.ceps.lu


[^0]:    *This research is part of the project "Estimation of direct and indirect causal effects using semi-parametric and non-parametric methods" supported by the Luxembourg "Fonds National de la Recherche" cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND). Van Kerm acknowledges funding for the project "Information and Wage Inequality" supported by the Luxembourg Fonds National de la Recherche (contract C10/LM/785657).

[^1]:    ${ }^{1}$ An R implementation of Royle and Nychka's algorithm is available in Furrer et al. (2013).

[^2]:    spacefill lon lat, ndesign(10) nnpoints(25) exclude(set1) genmarker(set2) noverbose

[^3]:    ${ }^{2}$ PSELLL3/EU-SILC is a longitudinal survey on income and living conditions representative of the population residing in Luxembourg. Data are collected annually in a sample of more than 3,500 private households.

